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ABSTRACT
Motivation: Statistical tests for the detection of differentially
expressed genes lead to a large collection of p-values one for each
gene comparison. Without any further adjustment, these p-values may
lead to a large number of false positives, simply because the number
of genes to be tested is huge, which might mean wastage of laborat-
ory resources. To account for multiple hypotheses, these p-values are
typically adjusted using a single step method or a step-down method
in order to achieve an overall control of the error rate (the so-called
familywise error rate). In many applications, this may lead to an overly
conservative strategy leading to too few genes being flagged.
Results: In this paper we introduce a novel empirical Bayes screening
(EBS) technique to inspect a large number of p-values in an effort to
detect additional positive cases. In effect, each case borrows strength
from an overall picture of the alternative hypotheses computed from
all the p-values, while the entire procedure is calibrated by a step-down
method so that the familywise error rate at the complete null hypo-
thesis is still controlled. It is shown that the EBS has substantially
higher sensitivity than the standard step-down approach for multiple
comparison at the cost of a modest increase in the false discovery rate
(FDR). The EBS procedure also compares favorably when compared
with existing FDR control procedures for multiple testing. The EBS pro-
cedure is particularly useful in situations where it is important to identify
all possible potentially positive cases which can be subjected to further
confirmatory testing in order to eliminate the false positives. We illus-
trated this screening procedure using a data set on human colorectal
cancer where we show that the EBS method detected additional genes
rela- ted to colon cancer that were missed by other methods.

This novel empirical Bayes procedure is advantageous over our
earlier proposed empirical Bayes adjustments due to the following
reasons: (i) it offers an automatic screening of the p-values the user
may obtain from a univariate (i.e., gene by gene) analysis package
making it extremely easy to use for a non-statistician, (ii) since it
applies to the p-values, the tests do not have to be t -tests; in particular
they could be F -tests which might arise in certain ANOVA formulations
with expression data or even nonparametric tests, (iii) the empirical
Bayes adjustment uses nonparametric function estimation techniques
to estimate the marginal density of the transformed p-values rather
than using a parametric model for the prior distribution and is therefore
robust against model mis-specification.
Availability: R code for EBS is available from the authors upon
request.
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INTRODUCTION
In recent years, the problem of simultaneous testing of multiple
hypotheses has seen new life mostly due to the recent microarray
experiments where expression levels of thousands of genes are sim-
ultaneously measured and compared in two (or more) tissue types.
This old problem has a new twist, namely, the number of comparisons
to be made is extremely large, often running into the ten thousands,
and there are only a limited number of replications. To complicate
things further, there are design limitations, and also present are
sources of potential bias so that some preprocessing of the data
is typically necessary. As a result, numerous papers have come
out in the last five years or so suggesting various methods, both
frequentists, as well as, Bayesian, for the detection of differentially
expressed genes in microarray experiments. Some of these are novel
methods applicable to general multiple testing (Storey, 2002; Efron,
2004) while others (Kerr et al., 2000, 2002; Ideker et al., 2000;
Newton et al., 2001; Tusher et al., 2001; Efron et al., 2001; Efron
and Tibshirani, 2002; Dudoit et al., 2002; Lee et al., 2003; Storey
and Tibshirani, 2003; Ge et al., 2003; Reiner et al., 2003; Zhao and
Pan, 2003 and so on) are specifically designed for microarray studies,
including adaptation of existing methods to suit microarray data. A
comprehensive review up to 2002 can be found in Pan (2002); also
see the literature review in Datta et al. (2004). See Dudoit et al. (2003)
for a comparative review of various error rates of several commonly
used multiple testing procedures.

Often times, biologists (practitioners) face the following frustrat-
ing situation in dealing with microarray assays involving a large
number of genes but a very few replicates. If they attempt to correct
for multiple testing using either a familywise error rate control pro-
cedure such as the Westfall and Young (1993) (WY hereafter) or an
FDR control procedure such as Benjamini and Hochberg (1995) (BH
hereafter) they hardly find any ‘significant’ genes. In other words,
these procedures, although statistically correct, are often very con-
servative in practice. Recently, Datta et al. (2004) used the notion
of empirical Bayes estimation in the context of microarray testing
in a novel way. They adjusted a number of t-statistics in such a way
that each of the modified statistics had a component that reflected
their collective evidence against the complete null hypothesis. The
procedure is however calibrated not to reflect a posterior probability,
but rather to control the overall familywise error rate under the
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complete null. They showed that this technique could greatly increase
the sensitivity of the entire procedure at the cost of a modest increase
in the false discovery rate.

The present proposal is a much more general attempt in using the
idea of empirical Bayes for screening multiple cases. The empir-
ical Bayes screening (EBS) method presented here has the following
three distinct advantages over the procedure in Datta et al. (2004):
(i) First and foremost, a simple resampling procedure can be imple-
mented to carry out the EBS in its simplest form since the null
(marginal) distribution of each p-value is uniform. Thus, EBS offers
an automatic screening of the p-values a user may obtain, say, from
an existing univariate (gene by gene) analysis package. Even though
the simplest EBS ignores potential dependence between genes, it
is shown to be quite robust with respect to cluster dependence in
a simulation setting. (ii) It works directly with the p-values. As a
result, the underlying tests do not have to be t-tests; in particular they
could be F -tests which might arise in certain ANOVA formulations
with expression data (Kerr et al., 2000). (iii) The empirical Bayes
procedure uses nonparametric techniques to estimate the marginal
density of the transformed p-values rather than using a parametric
model for the prior distribution and is therefore robust against model
mis-specification. A penultimate stage of this development was
represented in Datta and Datta (2004).

The performance of the EBS procedure is compared with bench-
mark procedure of WY. In addition, we also compare two FDR
control procedures, namely, the well-known adjustment due to BH
and a relatively recent procedure called BUM (Pounds and Morris,
2003). We show that both WY and BH are potentially conservative.
While BUM generally has very good sensitivity, it could be quite
unstable in terms of FDR and the results could be unreliable for some
data sets. Overall, the EBS procedure showed very good sensitivity
while maintaining a reasonable FDR in the various simulation
settings that we had considered.

Microarray studies are often regarded (and we are of this opinion)
as a preliminary screening method in detecting interesting genes and
any finding from such studies should be further validated by more
rigorous laboratory procedures (such as the RT–PCR). On the other
hand, a control of some global error rate (such as the familywise
error rate, the false discovery rate, etc.) is important given the rather
large number of hypotheses to be tested. We feel that the proposed
EBS accomplishes both these objectives.

The rest of the paper is organized as follows. The development
of the EBS procedure is provided in the next section. A number
of simulation studies of various differential expression patterns are
reported in the Simulation Results section. In all cases, the EBS led
to an increase in the overall sensitivity compared to the benchmark
WY and the other two competing p-value based methods. The
Applications to a Cancer Data set section illustrates the EBS
procedure using a data set on colorectal cancer. We show that the EBS
was able to pick up additional relevant genes compared to the other
three methods. The paper ends with a detailed Discussion section.

STATISTICAL METHODS

The empirical Bayes formulation
Suppose we have a number of tests of similar structure with associated
p-values denoted p̂i , 1 ≤ i ≤ M . In microarray studies, M would equal
the total number of genes (probe sets, etc.) on a microarray and for the ith
gene p̂i might be the observed level of significance for a test that compares its

average expression levels in two tissue types, say normal versus cancer cells.
Thep-values indicate evidence against the null hypotheses in the sense that the
smaller a p-value, the more significant the evidence is that the gene is indeed
differentially expressed. In general, it is defined as the chance of observing a
value of the test statistic that is as extreme as (e.g., as large as) the value of the
test statistic for the sample at hand, when indeed the gene is not differentially
expressed. Thus, it is always a function of the sample test statistic and hence
a random variable. Under the null hypothesis of no differential expression, p̂i

is uniformly distributed on the interval (0, 1) and therefore zi = �−1(p̂i ) is
distributed as standard normal (N(0, 1)) where � is the standard normal c.d.f.
(cumulative distribution function). In the empirical Bayes formulation, we
embed these distributions in a larger family of parametric distributions which
also support the alternative hypotheses. Because we are considering tests that
are of similar structure, one such model would be to assume an N(θi , 1)

distribution for zi . Since our goal is to identify cases with ‘small’ p-values,
we would test a new set of hypotheses Hi

0:θi = 0 versus Hi
1:θi < 0, in this

model. Since we are faced with simultaneous testing of a (large) number of
hypotheses, we might do better by combining evidence of all tests using an
empirical Bayes approach (Robbins, 1964; Efron and Morris, 1975). To that
end, assume a common, but unknown, prior distribution G, say, for each θi .
A Bayes test of Hi

0 against Hi
1 would reject Hi

0 for small values of θ̂B
i , that is,

the posterior mean E(θi |zi ) of θi . Since the prior distribution G is unknown,
this posterior mean needs to be estimated through nonparametric function
estimation techniques from data across all tests that share this common prior
distribution which we now pursue. The resulting estimated posterior mean
would be called an empirical Bayes estimate (EBE) of θi , and is denoted θ̂ EB

i .

Construction of θ̂
EB
i

It follows by differentiation under the integral sign of the marginal density
fG of zi that

f ′
G(zi) = −zifG(zi ) +

∫ ∞

−∞
θ

1√
2π

exp
{
− (zi − θ)2

2

}
dG(θ)

leading to the following well-known expression (see, e.g., Carlin and Louis,
2000, p. 86) of the posterior mean

θ̂B
i = zi + f ′

G(zi)

fG(zi )
.

Since fG is the common marginal density of the zi , we could estimate fG

by a nonparametric kernel density estimator based on the zi ,

f̂G(t) = 1

Mh

M∑
j=1

φ

(
t − zj

h

)
, t ≥ 0,

where φ is the standard normal kernel (density) and h is a small positive
number, called the bandwidth. The parameter h is user selectable and there
are numerous methods such as likelihood cross validation, asymptotic
minimization of the integrated mean squared errors etc. available in various
statistical software packages for choosing h. Alternatively, a visual inspection
(‘eyeballing’) of the resulting density plot may suffice in many applications.
Since we want each p-value to borrow strength from the smallest p-values
we want a longer left tail for the estimated density and therefore it might be
better to oversmooth f̂G somewhat for greater sensitivity. We took this last
approach for our application to the cancer data. A bandwidth of 0.7 led to a
smooth left tail even though there were some large negative z values (Fig. 1).

Substitution of f̂G(t) in the above expression of the Bayes estimator leads
to the following formula for the EBE of θi :

θ̂ EB
i = zi − h−2

{∑M
j=1(zi − zj )φ

(
zi−zj

h

)}
{∑M

j=1 φ
(

zi−zj

h

)} . (1)

Step-down p-value calculation
We would calibrate our screening procedure such that a familywise error
rate (FWER) of α ∈ (0, 1) is maintained. This represents the probability of
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Fig. 1. Distributions of the normal transforms (�−1) of the p-values in the colorectal cancer data.

reaching at least one significant conclusion when indeed the complete null
hypothesis is true. To that end, we resort to the resampling-based step-down
procedure of Westfall and Young (1993). Amongst many existing proced-
ures of FWER control, this is generally regarded as one of the best (least
conservative). After calculating the empirical Bayes estimates θ̂ EB

i given
by Equation (1), for all genes i, we compute the corresponding step-down
adjusted p-values p̃i with the following algorithm.

Step 1. Find the rank orders ri such that p̂r1 ≤ · · · ≤ p̂rM and let ui =
θ̂ EB
ri

, 1 ≤ i ≤ M .
Step 2. Generate a collection of random variables z∗

i , 1 ≤ i ≤ M from
the (approximate) null distribution of the original zi , 1 ≤ i ≤ M .

Step 3. Convert the z∗
i to the corresponding EBEs θ̂∗EB

i by Equation (1),
with z∗

i in place of zi throughout and let u∗
i = θ̂∗EB

ri
, 1 ≤ i ≤ M (note that

the ordering ri is not changed during resampling) and monotonize them by
u∗

i = min(u∗
i , u∗

i+1), i = (M − 1), . . . , 1.
Step 4. Repeat Steps 2 and 3 a large number of times, say B, and denote

the u∗
i values by u∗

i (1), . . . , u∗
i (B).

Step 5. Compute

p̃ri = B−1
B∑

l=1

I (u∗
i (l) ≤ ui)

and monotonize them as p̃ri = max(p̃ri , p̃ri−1 ), for i = 2, . . . , M .

Finally, declare cases (e.g., genes) r1, . . . , rkα to be significant (e.g.,
differentially expressed), where

kα = max{1 ≤ k ≤ M:p̃rk ≤ α}.
Step 2 above can be carried out in a variety of ways depending on the

situation. In the simplest form, z can be generated by random sampling from
N(0, 1) and that is what we advocate in practice since it provides an automatic
procedure. In essence, it assumes the tests (genes) are independent. Although
it is not a correct assumption, we show through simulation studies in the next
section that the performance of the EBS is quite robust even if this assumption
is violated. However, more sophisticated choices are sometimes possible if
the original data yielding the p-values are available. For example, in the
context of a two-sample problem (e.g., pooled t-tests), z∗ could be obtained
by calculating the z-transforms of the observed level of significance of the
test statistics calculated using randomly resampled or permuted vectors of
the observations of all gene expressions from the original data (Dudoit et al.,
2002). Datta et al. (2004) suggested creating pseudo data sets by resampling
the residuals in an ANOVA model for the gene expression in multiple tissue
types.

Working of the EBS
The ‘sharing of evidence’ or ‘borrowing of strength’ of the EBS procedure
can be easily seen from the expression (1) of the EBE θ̂ EB

i . The first term zi

is a monotonic transformation of the ith p-value pi and therefore comparing
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Fig. 2. Scatter plot of derivative of empirical log density against transformed
p-values for the ‘normal versus adenoma’ comparison in the colorectal
cancer data.

it with its null distribution is equivalent to the standard WY procedure.
On the other hand, the second term in θ̂ EB

i is an estimate of the derivat-
ive of the logarithmic marginal density (log fG)′ and its stochastic behavior
under the complete null hypothesis will be different from its behavior under
the alternative. Generally speaking, in microarray studies fG will have a
fatter left tail than the standard normal density (the null density). Thus, this
term will tend to be smaller than a typical value under the complete null
and, together, these terms will make θ̂ EB

i stochastically even smaller than a
corresponding value under the null. In other words, the degree of stochastic
difference will be larger than that using zi alone. The term (log f̂G)′ represents
an overall evidence against the complete null for such genes.

As a concrete example, consider the ‘normal versus adenoma’ comparison
for the colorectal cancer data considered in the ‘Applications to a Cancer
Data Set’ section. A typical alternative in microarray studies is represented
in the shape of the empirical density f̂G in Figure 1. Clearly, f̂G has a tail
shape as described in the previous paragraph. Figure 2 displays a scatter plot
of (log f̂G)′(zi ) against zi for this data set. In the same plot, the diagonal line
y = −z represents the null value of (log fG)′. We can see that for poten-
tially informative genes (say, those corresponding to negative zi ), it tends to
be below the diagonal line indicating an overall presence of ‘differentially
expressed genes’ corresponding to a given z level.

SIMULATION RESULTS
In this section, we report the results of a number of simulation stud-
ies where we compute various performance measures for screening
multiple p-values using both standard WY and EBS as well as the
FDR control procedures BH and BUM. These are:

(i) Sensitivity: proportion amongst differentially expressed
genes that were declared significant;

(ii) Specificity: proportion amongst non-differentially expressed
genes that were not declared significant;

(iii) False discovery rate (FDR): proportion amongst genes
declared significant that were not differentially expressed;

(iv) False non-discovery rate (FNR): proportion amongst genes
declared not significant that were differentially expressed.

Two-sample paired comparisons
We consider a set of simultaneous paired t-tests which can be applic-
able, for example in studying gene expression levels between two

samples hybridized on the same cDNA microarray. For simplicity
we assume that the tests are independent. Although this is not likely
to hold in the microarray setting, the results are still useful for under-
standing the utility of the empirical Bayes adjustment. Moreover, we
subsequently study the performance of the EBS method based on
this simple assumption in a dependent data setting.

We consider p-values arising from M = 2000 one-sample t-tests
(or equivalently two-sample paired t-tests) with r = 3, 5 and 8
replicates, respectively, where four types of alternative hypotheses
(differential gene expression) patterns are created in terms of means
of normal data (with unit variance scale). The data can be thought of
as the difference in the log-expression levels of gene expression in
two tissue types in the microarray context. A graph of the non-zero
means in the four simulated models is shown in Figure 3. As can be
seen from this figure, the proportion of non-null hypotheses ranges
between 2.5 and 13%. In each setting, we simulated data and com-
puted 2000 t-statistics which were converted into p-values using
p̂i = Pr{|t(r − 1)| > |ti,obs|}, where ti,obs is the observed value
of the ith t-test, 1 ≤ i ≤ M . We let zi = �−1(p̂i ). The z∗

i were
generated from i.i.d. N(0, 1) and B = 500 batches of resamples
were used. The overall FWER was controlled at α = 5%. For each
sample, p̃ were calculated in two ways: (i) using θ̂ , as described
in the algorithmic steps in the previous section (which we refer to
as ‘EBS’), and (ii) using p̂ following the same algorithmic steps
but with ui = p̂ri , u∗

i = p∗
ri

, where p∗
i = �(z∗

i ) (which we refer
to as ‘WY’). Note that WY is a standard step-down procedure that
has been in use for maintaining FWER in multiple hypotheses tests
(Westfall and Young, 1993). The results in Table 1 were all based on
a somewhat arbitrarily chosen bandwidth of h = 0.8. Although we
do not report the details, other nearby bandwidths were also investig-
ated and sensitivity gains over WY were noticed in all cases. For the
purpose of comparison we also study the performances of two FDR
control procedures BH and BUM (one old, one new) where the FDR
threshold level is set at 5%. Ideally, this would also ensure weak
control of FWER at 5% (Benjamini and Hochberg, 1995). For each
simulation setting, all four procedures were independently replicated
50 times and the four performance measures were calculated based
on the average proportions based on these 50 runs.

The amount of specificity of all procedures under study here were
at least 99% in all cases (with the exception of BUM in a few cases)
and are not reported further in Table 1.

The results in Table 1, which are shown in percentages, clearly
show that substantial sensitivity gain was achieved by employing
the EBS over the benchmark WY, especially in the low sensitivity
region. Overall, EBS compares extremely favorably amongst the
competing methods. Even though BUM has decent sensitivity as
well, it can break down completely in terms of controlling FDR in
cases where a BUM model does not adequately reflect the empirical
distribution of the p-values, as shown in Simulation 3. Basically,
under this scenario, for r = 3, BUM incorrectly estimated the pro-
portion of null hypothesis to be 1 for most of the 50 runs. EBS, on
the other hand, managed to maintain an acceptable level of FDR in
all cases that we studied even though it is not explicitly controlled
in this procedure. The EBS appears to have the smallest FNR in all
cases.

Next, we study the performance of the above EBS method that
implicitly assumes that the tests are independent (as incorporated
in the resampling stage) in the case of cluster-dependent data.
Consider, for example, log-transformed data di for the ith gene
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Table 1. Performance of various procedures for 2000 independent one-sample t-tests

Simulation Replication Sensitivity Sensitivity gain FDR FNR
size r WY EBS BH BUM over WY (%) WY EBS BH BUM WY EBS BH BUM

1 3 0.2 7.3 0.2 4.8 4294 4.0 9.9 2.0 9.5 10.8 10.1 10.8 10.3
5 12.1 81.5 78.7 78.0 572 0.0 5.8 4.5 4.3 9.6 2.2 2.5 2.6
8 66.7 91.2 92.9 93.2 37 0.0 2.8 4.5 4.9 3.8 1.1 0.9 0.8

2 3 0.2 6.0 0.2 5.7 3162 4.0 9.5 2.0 10.3 13.0 12.4 13.0 12.4
5 10.1 84.0 79.7 79.3 728 0.0 6.0 4.3 4.3 11.9 2.4 3.0 3.0
8 62.4 93.6 94.6 94.9 50 0.0 3.2 4.4 4.8 5.3 1.0 0.8 0.8

3 3 0.8 16.4 0.8 96.4 2063 4.0 13.2 2.0 94.0 2.5 2.1 2.5 0.0
5 55.9 100 100 100 79 0.2 4.5 4.8 3.8 1.1 0.0 0.0 0.0
8 100 100 100 100 0 0.1 1 5.1 5.1 0.0 0.0 0.0 0.0

4 3 0.2 28.7 0.4 12.8 12370 4.0 8.1 2.0 8.3 10 7.3 10.0 8.8
5 18 100 100 100 46 0.0 5.5 4.5 4.2 8.3 0.0 0.0 0.0
8 99.6 100 100 100 0.4 0.0 1.3 4.5 5.0 0.0 0.0 0.0 0.0

The thresholds for FWER in case of WY and EBS and for FDR in case of BH and BUM were all taken to be 5%. The measures are reported in percentages.

Table 2. Performance of various procedures (at 5%) for dependent one-sample t-tests

Simulation Replication Number Sensitivity FDR FNR
size r of clusters WY EBS BH BUM WY EBS BH BUM WY EBS BH BUM

1 3 10 0.2 11.1 0.3 7.1 6.0 11.1 2.3 10.5 10.8 9.7 10.8 10.1
50 0.1 7.5 0.2 4.9 4.0 11.0 1.5 10.8 10.8 10.1 10.8 10.3

200 0.2 8.5 0.4 5.5 4.0 10.1 4.8 9.7 10.8 10.0 10.8 10.3
5 10 13.0 82.3 79.6 79.2 0.0 5.6 4.5 4.7 9.5 2.1 2.4 2.5

50 12.9 81.4 78.4 77.6 0.0 5.6 4.2 4.0 9.5 2.2 2.6 2.7
200 12.0 81.8 78.9 78.1 0.0 5.5 4.3 4.1 9.6 2.2 2.5 2.6

3 3 10 0.6 19.9 0.8 67.7 5.0 13.3 3.4 67.0 2.5 2.0 2.5 0.1
50 0.3 17.9 0.3 85.0 6.0 14.2 6.0 83.3 2.5 2.1 2.5 0.0

200 0.8 18.5 1.5 88.6 4.0 12.3 5.0 85.8 2.5 2.0 2.5 0.0
5 10 59.9 100 100 100 0.0 4.6 5.1 10.3 1.0 0.0 0.0 0.0

50 56.2 100 100 100 0.0 4.2 4.3 3.5 1.1 0.0 0.0 0.0
200 56.6 100 100 100 0.1 5.0 5.1 3.9 1.1 0.0 0.0 0.0

generated by

dij = µi + 2−1/2ε′
I (i),j + 2−1/2εij , 1 ≤ j ≤ r , (2)

where r is the replication size, I = I (i) denotes the cluster-
containing gene i; 1 ≤ i ≤ M = 2000. The error terms ε and
ε′ are generated from independent N(0, 1) and the mean vector µ

was the same as in the simulations above. Biologically speaking,
we are envisioning that genes in a cluster act in consort resulting in
correlated expression measures. Basically, Equation (2) ensures that
a pair of genes belonging to the same cluster have non-zero correl-
ation; however if they belong to different clusters their expression
values are independent or uncorrelated. To see this, consider a pair
of genes i and i ′. If they both belong to the same cluster k, say then
I (i) = I (i ′) = k and the same error term ε′

k,j is used in generating
the expression values dij and di′j leading to Corr(dij , di′j ) = 0.5.
As before, the following table was computed based on 50 runs and in
each run we perform step-down calculation using 500 i.i.d. bootstrap
replicates from standard normal. In other words, the identical pro-
cedure as before was followed without the knowledge that the data

was generated this way. We chose three different numbers of clusters
(of equal sizes), 10, 50 and 200. The results are reported in Table 2.
For the sake of brevity, we only report the results for Simulations 1
and 3 with sample sizes 3 and 5. The FDR and the FNR of all the
procedures appear to be insensitive to the number of clusters while
the sensitivity is more variable in the low region. Overall, the per-
formance of EBS appears to be quite robust with respect to dependent
tests and it continues to enjoy its superior sensitivity property.

APPLICATIONS TO A CANCER DATA SET
We now illustrate our screening procedure with a real data set on
colorectal cancer. This data set was featured in Datta et al. (2004).
There were altogether nine Affymetrix chips corresponding to three
different patients (individuals) and three tissue types, normal,
adenoma and carcinoma. In this paper, we look at a subset of
about 10 000 genes out of over 12 000 genes in the Affymetrix U95
chipset, whose expression levels were judged to be reliable. The
initial p-values (unadjusted) were calculated from an ANOVA model
described below applied to this data set.
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ANOVA models for expression data
The ANOVA approach (linear models) has become a standard model-
ing tool to describe the (log-transformed) expression levels of genes
in experiments involving multiple tissue types (Kerr et al., 2000,
2002; Kerr and Churchill, 2001; Datta et al., 2004; Datta and Datta,
2004; etc.). Consider an experiment in which we have measured the
expression level X (appropriately normalized and transformed) for r

individuals, g genes and J tissue types (varieties). Consider a design
where a single microarray consisted of the expression levels of all
genes for an individual in a given tissue type. We model X as

Xijk = µ + Ik + Gi + Vj + (IG)ik + (GV)ij + εijk; (3)

here 1 ≤ i ≤ g, 1 ≤ j ≤ J and 1 ≤ k ≤ r index genes, tissue types
(variety) and individuals, respectively. The εijk’s denote i.i.d. mean
zero normal errors. In this model, µ represents the overall or mean
expression level; main effects Ik , Gi and Vj reflect the overall dif-
ferences in the expression levels for individuals, genes and varieties,
respectively and the interaction term (IG)ik accounts for the variab-
ility of expression of the ith gene among individuals. It is perhaps
more reasonable to assume the individual effect Ik to be random.
However for the sake of simplicity we treat these as fixed effects.
Also the independence of the error terms across genes is a simplify-
ing assumption. However, as demonstrated in the earlier simulation
example, the procedures based on the independent error assump-
tion continue to have reasonable performance for certain types of
dependent errors (cluster dependence). Our primary interest lies in
the gene×tissue-type interaction (GV)ij which measures the effect
of gene i in tissue type j . The null hypothesis of no differential
expression of gene i in two tissue types j1 and j2 is expressed as
H

i;j1,j2
0 : (GV)ij2 − (GV)ij1 = 0. The t-statistic testing H

i;j1,j2
0 is

ti;j1,j2 =
√

gr

2(g − 1)

(
Xij2· − X·j2· − Xij1· + X·j1·

)
σ̂

with

σ̂ 2 =
∑
ijk

(
Xijk − Xij · − Xi·k + Xi··

)2
/

ν,

ν = g(r − 1)(J − 1). The p-value for testing differential expres-
sion of gene i between tissue types j1 and j2 is given by p̂i;j1,j2 =
2

[
1 − P t(ν)(|ti;j1,j2 |)

]
, where P t(ν) is the cumulative distribution

function of a central t distribution with ν degrees of freedom.
Figure 1 shows the smoothed empirical distributions (i.e., the

estimated marginal density f̂G) of the normal transforms (�−1)

of these p-values for ‘normal versus adenoma’, ‘normal versus
carcinoma’ and ‘adenoma versus carcinoma’ comparisons for the
colorectal data set.

For each tissue-pair comparison, we compute the p-values for all
the genes using the above formulas and then feed them into the EBS
procedure based on i.i.d. uniform resampling. We also ran the other
three competing procedures on the same set of p-values. As in the
simulation section, we take the overall FWER of α = 0.05 for the
WY and the EBS and FDR control at 5% for BH and BUM. In all
cases, EBS has flagged more genes compared to other procedures.
These are summarized in Table 3. Note from Figure 1 that the empir-
ical distribution for the ‘adenoma versus carcinoma’ comparison is
very close to the complete null distribution (i.e., standard normal).
The BUM method broke down for this case since it estimated the
proportion of null hypotheses to be one (see earlier comments about
Simulation 3).
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Fig. 3. Non-null mean differential expression (log-scale) of four simulation
models.

Table 3. Number of genes that were declared to be differentially expressed
for the cancer data

Normal versus Adenoma versus Normal versus
adenoma carcinoma carcinoma

WY 47 7 54
EBS 252 44 210
BH 211 23 183
BUM 223 NA 183

Validation
We inspected the results for the normal versus adenoma comparison
in more detail. Figure 4 demonstrates the thresholds (indicated by
vertical lines) for the four p-value-based procedures under consid-
eration. In each case, genes whose p-values are to the left of the
threshold are flagged (declared to be significant). Thus, EBS picked
up 29 additional genes that were not flagged by any other procedure.
Although we have demonstrated through simulation that indeed the
EBS picks up more differentially expressed genes as evident from
its superior sensitivity, we wanted to see whether these additional
genes include any meaningful genes.

After searching the published literature, we found that indeed
several of these genes have been linked to colorectal or other cancers
in the past. We present a selected subset of five genes from this list
in Table 4.

The first gene on this list, CDC2, is a well-known cancer gene
(CG_ID 278) whose overexpression is colorectal adenocarcinoma
is well documented (Kim et al., 1999). In a previous study, FUT4
gene was found to be expressed in human colorectal cancer tissues
and colorectal cancer cell lines (see Nishihara et al., 1999) which is
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Fig. 4. Normal versus adenoma comparison: genes declared significant by
the various methods are to the left of the respective thresholds.

Table 4. A selected list of genes that were only flagged by the EBS procedure
for the normal versus adenoma comparison

Affy probe set Gene name Description

1803_at CDC2 Cell cycle controller
39210_at FUT4 Displays fucosyltransferase activity for type 2

(Gal beta1→GlcNac) containing oligosac-
charides and neolactotetraosylceramide

36627_at SPARCL1 Putative tumor-supressor
317_at LGMN Responsible for legumain activity
34319_at S100P S100 calcium binding protein P

further explained in Yazawa et al. (2002). SPARCL1 is a well-known
cancer gene (CG_ID 1662) whose downregulation occurs in human
non-small cell lung cancer (NSCLC), and also in prostate and
colon carcinomas. It has been suggested (using a colon carcinoma
model) that cancer gene LGMN (legumain, CG_ID 2178) could be a
target for therapy (Liu et al., 2003). Cells overexpressing legumain
possessed increased migratory and invasive activity in vitro and
adopted an invasive and metastatic phenotype in vivo. S100P is a
known cancer gene (CG_ID 2860) that has been linked with various
cancers such as breast, pancreatic and prostate cancers (Guerreiro
et al., 2000; Sato et al., 2004; Mousses et al., 2002).

DISCUSSION
In this paper, we propose a novel EBS procedure when one needs to
decide about a large number of null hypotheses. Unlike the empiri-
cal Bayes adjustment of Datta et al. (2004) which only applies
to studentized test statistics, the EBS procedure can work directly
with a set of p-values produced by individual tests. Thus it offers an
automatic screening of the p-values a user may obtain from his or
her favorite gene-by-gene analysis software. In addition, the current

procedure utilizes the p-values and not the test statistics; therefore,
it has broader applicability to other types of tests such as the F -tests
or rank tests. For example, in a microarray experiment involving
multiple tissue types (e.g., normal, adenoma and carcinoma) one
would be able to detect genes that are differentially expressed
amongst the various types of tissues (without restricting attention
to a particular tissue pair). The EBS procedure screens each p-value
not only on its own magnitude but also on the basis of the totality of
thep-values (or its empirical distribution). In that sense, eachp-value
may borrow evidence from other p-values leading to a detection of
a greater number of ‘interesting cases’, when the complete null is
false, while maintaining a control on the familywise error rate under
the complete null.

As stated in the introduction, there are other global statistical
approaches such as SAM (Tusher et al., 2001) and VERA (Ideker
et al., 2000), for the detection of differentially expressed genes in
microarray studies. In this paper, we specifically restrict our atten-
tion to methods that are based on gene-by-gene p-values. Three such
existing methods have been compared with our proposed method.
We conclude this section with a number of additional comments.

Strong versus weak control of FWER
The WY step-down procedure yields strong control of FWER under a
subset pivotality condition. This means that even when the complete
null is not true, the procedure will declare at least one of the compon-
ent null hypotheses as positive with probability at most α. However,
this will not be true for EBS which can only be calibrated at the
complete null. Since philosophically (as well as algebraically) it
uses shared or borrowed evidence from all hypotheses, the non-null
distribution of one p-value affects the distribution of all the empir-
ical Bayes estimates. Note that FDR control procedures such as BH
or BUM also control the FWER in the weak sense. We feel that for
many applications, the strong control requirement is unduly conserv-
ative and would recommend using the EBS nevertheless. However,
if desired, a modified version of the EBS can be constructed as
follows that would have better control of FWER under incomplete
null hypotheses at the expense of lower sensitivity.

Choose a positive integer 1 ≤ M0 < M , where (M0 + 1) rep-
resents one prior assessment of the maximum number of null hypo-
theses (for controlling the type 1 error rate protection). The original
EBE procedure assumes M0 = M − 1. Follow the same algorithmic
steps as before, except for 1 ≤ i ≤ (M − M0), estimate the deriv-
ative of the logarithmic derivatives using the empirical distribution
of zri , . . . , zrM , and for (M − M0) < i ≤ M , use the empirical
distribution of zrM−M0

, . . . , zrM .

Modeling dependencies amongst genes
In this paper, a relatively straightforward analysis of a microarray
data set is presented which does not account for gene to gene correl-
ation. While this suffices for the illustration of the EBS procedure as a
method of screening a large number of p-values, a more sophisticated
data analysis would need to consider a correlation structure for
the gene expressions. While the correct correlation structure may
be too complicated and nearly impossible to formulate or to estimate
on the basis of limited microarray data that is typically available,
a good compromise would be to add a random effect term in the
ANOVA model (3) corresponding to the cluster a gene belongs to.
Of course, this approach would have to assume that the cluster mem-
berships are known which can only be implemented in practice by
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an initial clustering procedure. This would amount to assuming a
constant correlation within each cluster. A parametric bootstrap, gen-
erating data from the appropriate normal distributions, will have to
be employed in order to carry out the step-down procedure. On the
other hand, simulation studies in this paper show that the EBS using
p-value calculation based on independence assumption seems to
have reasonable performance under this type of dependence as well.

Other applications
While we propose the EB screening procedure primarily for the
detection of differentially expressed genes, it is applicable in any
situation where one has to simultaneously decide about a large
number of null hypotheses. This is particularly suitable in situations
where it is not of a severe consequence to falsely reject some of the
null hypotheses in case the complete null is false. In a sense, this
can be viewed as an initial screening procedure where the positive
results could be investigated further for confirmation. Proteomics
(mass spectrometry) data is another example where the problem of
feature (or m/z ratio) selection between competing tissue types can
be thought of as a simultaneous testing problem. Perhaps one goal
might be to use the selected features from a set of training samples to
build a classifier. A classifier such as the Random Forest (Breiman,
2001) can handle ‘extra’ variables and therefore this might be a good
application even if some m/z ratios that are not important in differ-
entiating the spectra are selected as variables for the classifier along
with the important m/z ratios.
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